GC, MDGC

  • I Love Your Perfume. Is it Yeast?

I Love Your Perfume. Is it Yeast?

Aug 03 2015 Read 1242 Times

How you smell directly affects how people feel about you and how you feel about yourself. Evidence also shows that pleasant smells affect your frame of mind — having a positive effect on your mood and making you appear more attractive to other people.

Biotechnology researchers are now working on ways to make cultured copies of natural fragrances in a cost-effective way without using petrochemicals. And one of the key ingredients is — yeast.

Roses are red

Fragrance manufacturers use natural sources for their smells wherever possible, especially in expensive products like perfumes. Essential oils derived from the source material are typically used — for example rose oil made from rose petals.

Large fields of roses have to be picked by hand and then distilled to produce the rose oil. But besides being expensive and time consuming, the route from harvest to delivery of a final product at the fragrance house can be unpredictable in terms of both price and quality.

Being able to reduce the variation in quality and price is important for the fragrance houses; and now a biotechnology company called Ginkgo BioWorks is working to produce quality fragrances using DNA technology and yeast.

Rose compounds using headspace analysis

The scent of a rose is due to a complex mix of compounds; different rose varieties have a different mix of compounds — so headspace analysis is used to determine which compounds are present in each rose.

In headspace analysis, the samples are placed in an airtight contaImage iner and the volatile compounds collect in the air space above the sample. The volatile components are sampled and analysed using gas chromatography to identify and quantify the compounds present. For a detailed discussion on headspace analysis have a look at the article, Headspace Gas Chromatography as a Green Analytical Technique in Chromatography Today.

Bioengineered odours

Once the odour molecules have been identified, Gingko has to make them — and this is where yeast and DNA come in. By identifying the genes and the coding sequence for the enzymes that the plant uses to make the scent compound, Gingko can modify the genome of a strain of yeast to replicate the plant’s process.  Producing the odour compound in a yeast cell, just like a miniature chemical factory.   

One of the problems that the team have encountered is removing the yeast odour from the cultured rose fragrance. But they are confident this can be achieved either by further genetic modification to the yeast or by changes in the process.

Either way, someday soon you could be dabbing a yeast cultured fragrance on your neck before you head off on your latest date.

Image: Michael J. Bennett (Own work) via Wikimedia Commons
Read comments0

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.


Digital Edition

Chromatography Today - September 2018

September 2018

In This Edition Articles - The Past, Present, and Future (?) of Analytical Supercritical Fluid Chromatography - a 2018 Perspective - Column Technology for Achiral SFC Separations - Practica...

View all digital editions

Events

HUPO 2018

Sep 30 2018 Orlando FL, USA

SPICA 2018

Oct 07 2018 Darmstadt, Germany

SFC 2018

Oct 17 2018 Strasbourg, France

analytica China

Oct 31 2018 Shanghai, China

View all events