HPLC, UHPLC
A Wettable HPLC Phase Explained
Aug 03 2020
Recently the Kromasil wettable phase was introduced for production-scale purification of polar substances like biomolecules under aqueous conditions. It is now also available in columns for analytical HPLC applications. Nominally, the wettable phase is a C18 phase. Normally, this is a highly hydrophobic phase. How can such a phase be ‘wettable’?
On a regular C18 phase, if 100% aqueous conditions are gradually applied, the mobile phase can keep fairly good contact with the stationary phase as long as the high pressure in the system is maintained. In this situation the pressure forces the mobile phase to be present in the stationary phase’s pores, despite the repealing force from the hydrophobic surface. If the pressure drops (i.e. at flow decrease or stop), the liquid is expulsed from the pores, dramatically reducing the interaction surface between stationary and mobile phases. For the chromatographic properties that means a severe loss in selectivity and coelution of sample components. The surface availability can be restored in the column by switching back to normal phase conditions, though, but the actual chromatographic run can be considered as ruined.
To make the stationary phase wettable in fully aqueous conditions (avoiding dewetting as above), a polar component is introduced on the surface, like a mixed-mode phase. Some have added the polar groups at the root of the surface modifier. The Kromasil wettable phase has it as polar-embedded end-capping. This also allows for a better chemical stability of the phase under acidic conditions compared to other related purification phases on the market.
For more details about the chromatographic conditions for the illustration of this article, as well as learn more about this phase: properties according to the Tanaka test set, examples and current availability, please visit the wettable phase page on the Kromasil website.
More information online
Digital Edition
Chromatography Today - Buyers' Guide 2022
October 2023
In This Edition Modern & Practical Applications - Accelerating ADC Development with Mass Spectrometry - Implementing High-Resolution Ion Mobility into Peptide Mapping Workflows Chromatogr...
View all digital editions
Events
Oct 20 2024 Dresden, Germany
Oct 20 2024 Fort Worth, TX, USA
Oct 21 2024 Dalian, China
Nov 12 2024 Tel Aviv, Israel
Nov 18 2024 Shanghai, China