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Introduction
Untargeted cross-sample analyses such 

as sample classification and biomarker 

discovery require separating, quantifying, and 

identifying a large number of compounds in 

chemically rich samples and then relating the 

complex compositions across samples and 

sample classes. Advanced chromatography, 

mass spectrometry, and statistical data 

analysis methods can be combined to 

address this challenge [1]. In particular, 

separations performed with comprehensive 

two-dimensional chromatography (such as 

GCxGC and LCxLC) provide much greater 

separation capacity and signal-to-noise 

ratio than traditional one-dimensional 

chromatography [2,3]. Coupled with high-

resolution accurate mass spectrometry, 

comprehensive two-dimensional 

chromatography is a powerful analytical 

solution. However, the large and complex 

data sets produced also present challenges 

for data analysis. 

The InvestigatorTM framework (GC 

Image, Lincoln NE, USA) developed 

previously analyses data from multiple 

samples to extract a feature template that 

comprehensively captures the pattern of 

peaks detected in the retention-times plane 

[4, 5]. Automated feature template extraction, 

as outlined in Figure 1, is performed by: (1) 

matching peaks to construct a pattern of 

alignment peaks that can be reliably matched 

across chromatograms; (2) aligning and 

combining chromatograms across samples 

to create a composite chromatogram; and 

(3) detecting peak-regions observed in 

the composite chromatogram. Then, for 

each sample chromatogram, the extracted 

feature template is transformed to align 

with the detected peak pattern and used to 

generate a set of feature measurements from 

transformed peak-regions for cross-sample 

analyses. The approach avoids the typically 

intractable problem of comprehensive peak 

matching and can produce feature templates 

with thousands of features.

The result of the Investigator framework is a 

feature database with three data dimensions: 

the chemical features extracted (i.e., peaks 

and peak-regions); the various attributes 

measured for each feature, such as retention 
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Figure 1. Automated Investigator Workflow. The workflow detects and aligns all compounds from multiple 
chromatograms, and extracts feature vectors for untarged cross-sample analyses.
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times and responses; and the samples 

and sample classes, for which relative 

measurements can be used to compare 

compositions. Such feature databases can 

be used for chemical fingerprinting, sample 

classification, chemical monitoring, sample 

clustering, and biomarker discovery. One 

important challenge is to develop data 

analysis and visualisation tools that can 

help select a few markers that can be used 

effectively for clustering and classifying 

multiple samples.

One common problem of marker selection 

is to detect unexpected compounds that 

appear in some samples but not others. 

A new workflow and associated tools are 

developed to allow analysts to detect 

common and unique compounds across 

many samples. This new workflow extends 

the Investigator framework with specialised 

detection and identification constraints 

that use chromatographic and mass 

spectral information to distinguish targeted 

compounds. In addition, new visualisation 

tools for multi-classification methods provide 

not only metric values, but also instructive 

predictions as to which features are effective 

for distinguishing samples. The workflow is 

demonstrated with two sample sets analysed 

by GCxGC coupled with quadrupole time-of-

flight (Q-TOF)  mass spectrometry. 

Classical Statistics
Given a feature database extracted by the 
Investigator framework, classical statistical 
tools can be used for multiclass analysis to 
select constituents whose relative presence in 
samples are statistically related to the classes 
of the samples. For two sample classes, the 
Fisher Discriminant Ratio (FDR) is often used. 
FDR is the ratio of between-group variance 
to within-group variance [6, 7].  It can be used 
to assess pairwise class differences for the 
measure in each peak-region feature:

where FDR(x1, x2) is the FDR for the sample 
sets of measured values from two classes, 
x1 from Class 1 and x2 from Class 2; μi is the 
mean of sample values in xi ; and σi

2 is the 
variance of sample values in xi. For multiple 
sample classes, the F value is used to assess 
multiclass differences [7, 8]:

where K is the number of classes, Ni is the 
number of sample values in xi , N is the 
number of sample values in all classes, μi 
is the mean of sample values in xi , μ is the 
mean of all sample values, and xi ,j is the jth 
value in xi.  For k=2 and N1=N2, FDR and F 
value are equal.  

A large FDR or F value indicates a large 

separation of the class means relative to their 

within-class distributions. The direction of the 

change is indicated by the difference in means.  

Although FDR and F value work well for 

traditional data classification analysis, they 

do not always accommodate practical 

requirements of chromatographic data 

analysis and chemical marker selection. For 

example, in practice, it may be expensive 

to collect multiple samples per class or 

to acquire multiple chromatographic runs 

for each sample. In situations with a single 

chromatographic run per sample class, FDR 

and F value cannot be computed (because 

they rely on within-class variance). Also, even 

if multiple chromatogram runs are available 

for each sample class, FDR or F value alone 

may not provide reliable predictions of 

commonality and uniqueness. For example, 

a compound feature with a high F value may 

be simply due to the response differences 

instead of identity differences across all 

samples. Thus, in order to detect unique 

compounds that appear in one sample class 

but not others or common compounds that 

appear in all samples, multiple attributes 

measured such as retention times, responses, 

and spectral information need to be used 

to cross-check the identities of chemical 

features.

Figure 2. New Workflow UI and Visualisation. The new workflow uses specialised detection and identification constraints to search for common and unique 
compounds. The result is displayed in a colour-labelled bubble plot that can be examined by analysts.
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Methods
A new workflow and associated tools are 

developed to extend the Investigator 

framework with specialised detection 

and identification constraints based on 

chromatographic and mass spectral 

information to distinguish targeted 

compounds. Their purpose is to provide 

searching and visualisation methods that 

operate on a feature database to find 

common and unique compounds across 

many samples for either multi-sample 

classes or one-sample classes. 

Starting with the Investigator framework, 

each chromatogram is analysed using a 

template comprising: (1) a set of peaks 

that can be reliably recognised across 

chromatograms, which are used for 

chromatographic alignment, and (2) a 

comprehensive set of peak-regions, which 

are used as features for semi-quantitative 

sample comparisons. The reliable peaks 

are determined from the bidirectional 

pairwise matching of all possible pairs 

of chromatograms [9]. The peak-region 

features are delineated by peak detection 

in the composite chromatogram created by 

aligning and summing all chromatograms 

[5]. For the analysis of each chromatogram, 

the template is aligned using the reliable 

peaks, then each peak-region is regarded 

as a compound feature. The problem of 

recognising the same compound feature 

in each chromatogram is automatically and 

implicitly resolved because measures are 

taken in the same peak-region aligned for 

each chromatogram.

Afterwards, both chromatographic and 

spectral information of compound features 

are extracted from chromatograms and 

deposited to a feature database. The 

chromatographic attributes extracted 

include retention times, signal-noise ratio 

(SNR), and the total intensity count (TIC) in 

each peak-region. The TIC value provides 

a relative measure for a compound feature 

in a chromatogram. In order to normalise 

across chromatograms, the TIC measures 

are normalised by the total TIC values for 

all peak-regions in the same chromatogram 

to give a measure of percent-response. The 

spectral information extracted includes the 

spectrum of each compound feature and 

its base peak, which can be used to confirm 

feature correspondences based on spectral 

similarity. Then, a Compound-Sample-Class 

hierarchical association index (HAI) is built 

and pruned by applying specified criteria 

that can give analytically useful information 

on compound deviations between samples 

as shown in Figure 2. 

The pruning process on the HAI uses the 

following three general filters:

• Detection Filter: SNR is used to filter out 

compound features from peak-regions that 

contain only background signals.

• Cross-Sample Significance Check: For 

multi-sample classes, variance-based 

statistics (i.e., FDR or F value) are used to 

select compound features. Low variances 

indicate commonality and high variances 

indicate uniqueness. For single-sample 

classes, samples are selected by a 

threshold applied to relative measures 

normalised by the maximum value across 

samples. If all samples are selected, the 

corresponding compound feature may be 

common. If only one sample is selected, 

the compound feature may be unique.

• Cross-Sample Identification Check: The 

spectra of the same compound feature are 

compared across samples by match scores 

and base peaks. A compound unique to 

a sample should have low match scores 

when compared with other samples. A 

compound common among all samples 

should have high match scores across all 

samples.

The pruning result is visualised with a 

color-labeled bubble plot. Each bubble 

represents a common or unique compound 

feature found. The colour of the bubble 

indicates the class for which the compound 

is detected. The size of the bubble can be 

set to indicate its significance, for example, 

SNR for single-sample classes or F value for 

multi-sample classes. All bubbles are placed 

based on their retention times. The resulting 

bubble plot provides not only metric values, 

but also instructive predictions as to which 

features are effective for distinguishing 

samples as demonstrated in the following 

results. 

Experiments
Two example analyses are presented here 

to demonstrate the effectiveness of the new 

workflow. The data were processed and 

visualised using a developmental release of 

GC Image GCxGC-HRMS Edition Software 

(Version 2.7, GC Image, Lincoln NE, USA).  

Multi-Sample Class  
Example: Rice Blast Fungus
The first example analysed data from 4 

types of rice blast fungus (Magnaporthe 

oryzae) including the wild-type (wt) Guy11 

strain and mutant strains resulting from 

Figure 3. Untargeted Analysis of 4 Types of Rice Blast Fungus. The left bubble plot shows all compound features with F values as bubble sizes. The right bubble plot 
shows only the compound features that are detected as either unique or common with variances as bubble sizes. Orange arrows point out some compound features 
that are detected as unique for Guy11.
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the deletion of genes encoding a nitrogen 

regulator (Δnut1), a carbon regulator 

(Δmdt1), and an integrator of carbon and 

nitrogen metabolism (Δtps1) [10, 11]. Three 

samples were collected for each of the four 

classes (wt, Δnut1, Δmdt1, Δtps1). Mycelial 

tissue samples were collected, lyophilised, 

and ground in liquid nitrogen. The 

metabolites were extracted using a mixture 

of methanol:chloroform:water (1:2.5:1, v/v/v). 

The extracts were dried under vacuum and 

derivatised by methoximation followed by 

silylation with MSTFA + 1% TMCS. The 12 

samples were analysed using a GCxGC-

QTOFMS system.  The GCxGC system (with 

Model 7890B GC, Agilent Technologies, 

Santa Clara CA, USA) employed a loop 

thermal modulator (Model ZX2, Zoex 

Corporation, Houston TX, USA). The 

QTOFMS system (7200 Series GC/Q-TOF 

MS, Agilent Technologies, Inc) acquired high 

resolution mass spectra of the secondary 

column effluent at a rate of 50 spectra per 

second. The instrument conditions are 

summarised in Table 1.

The Investigator framework extracted 159 

reliable peaks used for alignment and 

572 peak-regions used to create a feature 

template. The following criteria were used  

to search:

• Detection Filter:  SNR > 10,

• Cross-Sample Significance Check: SNR F 

Value Threshold = 5,

• Cross-Sample Identification Check: 

Spectral Match Factor Threshold = 500.

From the total of 572 features, 35 features 

were found as common and 5 features were 

found as unique for two fungus types, as 

shown in Figure 3. On the left, a bubble plot 

shows all features with F values as bubble 

sizes. Each feature is assigned with a colour 

for the class that has the largest FDR value 

computed with the one-vs-all strategy 

[12]. Features with a large FDR or multi-

class F value can be regarded as potential 

biomarkers of metabolomic differences. 

On the right, a bubble plot shows common 

and unique features with F values as bubble 

sizes. Each unique feature is assigned the 

class label of the sample that it belongs 

to after pruning by the above criteria. 

Clearly, not all potential markers are also 

unique makers for a specific class. The most 

promising markers can be examined more 

closely. Figure 4 shows one of the distinctive 

features found for wt samples.

Figure 4. Comparative Results: wt(Guy11) vs. Others. The regions with red outline are compound features found only in wt(Guy11) samples.

Parameter Setting

GC Conditions

     Primary Column HP-5MS UI,  15 m × 0.25 mm × 0.25 μm

     Secondary Column SGE BPX-50, 3.25 m × 0.1 mm × 0.1 μm

     Split Ratio 15:1

     Split Inlet Temperature 280°C

     Oven Temperature Program 60°C to 310°C at 3°C/min

     Carrier Gas Flow 1.2 mL/min

Modulation Conditions

     Modulator Zoex ZX2

     Modulation Period 6.8 seconds

     Cold Jet Flow 13 L/min

     Hot Jet Temperature 375°C

MS Conditions

     Transfer Line Temperature 310°C

     Ionisation Mode EI

     Data Acquisition Rate 50 Hz

Table 1 GCxGC-QTOFMS Instrument Conditions - Rice Blast Fungus
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One-Sample Class Example: 
Essential Oils
The second example analysed data of 10 

essential oils including Cardamom, Clove 

Bud, Coriander, Fennel, Ginger Oil, Juniper 

Berry, Lavender, Nutmeg, Peppermint, 

and Turpentine [13]. Only one sample was 

collected for each type of essential oil. The 

10 samples were analysed using the GCxGC-

QTOFMS system with Agilent 7890A GC/

Zoex ZX2 thermal modulation system coupled 

with Agilent 7200 Q-TOF. Samples were 

directly injected. The instrument conditions 

are summarised in Table 2.

The Investigator framework extracted 35 

reliable peaks used for alignment and 

1352 peak-regions used to create a feature 

template.  The following criteria were used 

to search:

• Detection Filter:  SNR > 10,

• Cross-Sample Significance Check: Relative 

SNR Threshold = 0.1,

• Cross-Sample Identification Check: Spectral 

Match Factor Threshold = 500.

There are 12 common features and 319 

unique features found from total 1352 

features as shown in Figure 5. On the left, 

the composite chromatogram is overlaid 

with all extracted features indicated by 

purple rectangles. On the right, a bubble 

plot shows common and unique features 

with average percent response as bubble 

sizes and class labels determined by the 

above criteria. Figure 6 shows one of the 

distinctive features for Lavender. In the 

chromatogram of Juniper Berry, this feature 

peak-region is a background region; and, in 

the chromatogram of Ginger Oil, it contains 

another compound with a different spectrum. 

Without the cross-sample identity check, 

this feature would not be found as a unique 

compound for Lavender.

Conclusion
Classical statistical tools are useful but 

not sufficient for real-world cross-sample 

data analysis. The new workflow and 

associated tools described above combine 

classical statistical tools with advanced 

data processing, filtering, and visualisation 

in order to detect common and unique 

compounds across multiple samples. The 

workflow was demonstrated with two typical 

untargeted analysis cases with GCxGC-

QTOFMS data. The same workflow can be 

used to analyse multiple classes of samples 

with any comprehensive two-dimensional 

chromatography technique. 
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Figure 6. Comparative Results: Lavender vs. Common and Others. Dark blue arrows point out three of the common compound features that exist in all samples. 
Orange arrows point out one of the unique compound features for lavender. Spectra at the same location also confirm its uniqueness across samples.
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