
Introduction
Unintended use of an out-of-specification 

flavour mix in foods, beverages or nutritional 

formulations can lead to reduced consumer 

confidence and product losses. However, 

traditional screening using a trained sensory 

panel is expensive. Viable instrumental 

alternatives for determining acceptance are 

few due to various practical limitations:

•	 The	gold-standard	VOC	analysis	

methods	-	gas	chromatography	(GC),	gas	

chromatography-olfactometry	(GC-O),	

and	liquid	chromatography	(LC)	-	are	

slow	and	can	struggle	with	the	diversity	

of	compounds	in	flavours.	They	also	

require significant sample preparation, 

including	derivatisation	for	the	short-

chain	aldehydes	and	organic	acids.

•	 Electronic	noses	are	subject	to	significant	

drift, susceptible to contamination and 

false	positive	readings	(e.g.	from	ethanol	

residues),	and	cannot	identify	individual	

flavour components.

•	 Traditional	direct	mass	spectrometric	

(DMS)	methods	are	too	harsh	or	not	

selective	enough	to	give	unique	spectral	

fingerprints. 

Selected	ion	flow	tube	mass	spectrometry	

(SIFT-MS),	on	the	other	hand,	is	a	direct	

mass	spectrometry	(DMS)	technique	that	

eliminates	chromatography	and	applies	

very	soft	chemical	ionisation.	In	doing	so,	

SIFT-MS	can	selectively	fingerprint	samples	

of	proprietory	composition	–	without	

identification of flavour compounds – in less 

than	one	minute.

Recently,	rapid	geographical	classification	of	

Mediterranean	olive	oils	[1]	and	Moroccan	

Argan	oils	[2]	has	been	achieved	using	

untargeted	SIFT-MS	analysis	combined	with	

multivariate	statistical	analysis.	In	this	paper,	

a	similar	approach	is	applied	to	classify	

various commercial strawberry flavour 

mixes	for	intra-mix	(i.e.	batch)	and	inter-mix	

variations.

Method
1.	The	SIFT-MS	technique

SIFT-MS	[3,4,5]	uses	soft	chemical	ionisation	

(CI)	to	rapidly	quantify	VOCs	to	low	parts-

per-trillion	concentrations	(by	volume,	pptV).	

The	SIFT-MS	technique	is	represented	

schematically	in	Figure	1.	Eight	individually	

selectable	reagent	ions	(H3O
+,	NO+,	O2

+,	O-, 

OH-,	O2
-,	NO2

-	and	NO3
-)	are	generated	in	a	

microwave	discharge	through	moist	or	dry	

air.	These	eight	reagent	ions	react	with	VOCs	

and	other	trace	analytes	in	well-controlled	

ion-molecule	reactions,	but	they	do	not	

react	with	the	major	components	of	air	(N2, 

O2	and	Ar).	This	enables	real-time	analysis	

of air samples at trace and ultra-trace levels 
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Figure 1. Schematic diagram of SIFT-MS – a direct chemical-ionisation analytical technique.
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without	pre-concentration,	and	results	

compare	well	with	gas	chromatography	

mass	spectrometry	(GC-MS)	[6].

Rapid	switching	between	reagent	ions	

provides	high	selectivity,	because	the	multiple	

reaction	mechanisms	can	provide	additional	

independent	measurements	of	each	analyte.	

The	multiple	reagent	ions	also	help	to	

remove uncertainty from isobaric overlaps in 

mixtures containing multiple analytes.

In	this	study,	full	mass	scan	analyses	(SCAN)	

were	carried	out	using	a	Voice200ultra 

SIFT-MS	instrument	(Syft	Technologies,	

Christchurch,	New	Zealand).	Only	the	NO+ 

reagent	ion	was	utilised	due	to	this	ion	being	

the	least	affected	by	the	relatively	high	

ethanol	residues	in	the	flavour	mixes		(the	rate	

coefficient	for	reaction	of	NO+	with	ethanol	is	

somewhat	slower	than	H3O+	and	O2+).

The	NO+	reagent	ion	also	has	two	other	

significant benefits for flavour analysis:

•	 NO+ reacts via multiple reaction 

mechanisms	(association,	hydride	

abstraction,	electron	transfer	(ET)	and	

dissociative	ET),	the	relevance	of	which	

depends	on	the	molecule’s	ionisation	

energy	and	chemical	functionality.	

This	maximises	selectivity	both	for	

conventional	targeted	analysis	and	for	the	

fingerprinting	approach	applied	here.

•	 NO+	is	highly	immune	to	moisture	

variations.

Since	the	flavour	mixes	analysed	in	this	study	

are proprietory formulations, identities of 

specific	components	in	the	spectra	were	

not	provided.	However,	Latrasse	[7]	reviews	

of	compounds	that	are	likely	to	be	present,	

which	include	alcohols,	aldehydes,	esters,	

furanone	derivatives.	Table	1	provides	some	

examples	of	the	reaction	chemistry	for	

several	compounds	identified	in	the	flavour	

mixes.

2.	Automated	SIFT-MS	analysis

In	SIFT-MS,	direct	sample	analysis	facilitates	

high-throughput	headspace	analysis,	

because	the	rate-limiting	chromatographic	

analysis	is	eliminated.	In	contrast	to	

automated	chromatographic	techniques,	

which	require	rapid	injection	to	achieve	

good	peak	shapes	and	temporal	separation,	

SIFT-MS	requires	steady	sample	injection	

for	the	duration	of	the	analysis.	In	SIFT-

MS,	sample	injection	and	analysis	occur	

simultaneously. 

Automated	headspace	analysis	was	carried	

out	using	a	SIFT-MS	instrument	coupled	with	

a GERSTEL	multi-purpose	sampler	(MPS;	

GERSTEL,	Mülheim	an	der	Ruhr,	Germany).	

Samples	were	first	incubated	in	a	GERSTEL 

agitator	prior	to	sampling	of	the	headspace	

and	subsequent	injection	into	the	SIFT-MS	

instrument	through	a	GERSTEL septumless 

sampling	head.	A	make-up	gas	flow	(high-

purity N2)	was	also	introduced	through	the	

sampling	head,	maintaining	the	standard	

sample	gas	flow	(nominally	25	cm3 min-1)	into	

the	SIFT-MS	instrument.	

The	GERSTEL	MPS2	autosampler	was	

controlled using GERSTEL’s	Maestro	

software.	In	addition	to	controlling	the	

injection	into	the	SIFT-MS	instrument,	the	

Maestro	software’s	PrepAhead	function	

allows	for	optimal	scheduling	of	pre-

injection	preparation	steps,	such	as	syringe	

flush	or	incubation.	This	ensures	that	the	

highest	sample	throughput	is	achieved	–	a	

feature	that	is	more	important	for	SIFT-MS	

than	for	chromatographic	methods.

3.	Samples	and	analysis	conditions

Table	2	summarises	the	powdered	

strawberry flavour samples supplied for 

analysis.	For	each	flavour	mix,	five	replicate	

samples	(10	±	1	mg)	were	weighed	into	

20	mL	headspace	vials	and	incubated	at	

50°C	for	15	minutes.	The	headspace	was	

sampled	with	a	2.5	mL	headspace	syringe	

and	injected	at	a	flow-rate	of	10	µL	s-1 into 

the	SIFT-MS	instrument’s	inlet	together	with	

the	make-up	gas,	giving	a	total	flow	rate	of	

ca.	420	µL	s-1.	A	blank	was	analysed	between	

each	set	of	replicates	and	subsequently	

subtracted	from	the	following	group.	Flavour	

mixes	and	blanks	were	analysed	in	less	than	

one minute per sample.

4.	Multivariate	statistical	analysis

The	SIFT-MS	SCAN	data	(NO+ reagent ion 

only)	were	post-processed	using	multivariate	

statistical	analysis	to	determine	the	ability	of	

SIFT-MS	to	discriminate	between	the	flavour	

mixes.

The	multivariate	statistical	methodology	

Table 1. Example NO+ reaction chemistry for several potential components of the flavour mixes [7].

Flavour	compound Reaction(s)	of	NO+	with	the	compound* Mechanism	name

Furaneol C6H8O3	+	NO+ → C6H8O3
+	(m/z	128)	+	NO	

[95%]

C6H8O3	+	NO+ + N2 → C6H8O3.NO+	(m/z	158)	

+ N2	[5%]

Electron	transfer

Association**

Methyl	cinnamate C10H10O2	+	NO+ → C10H10O2
+	(m/z	162)	+	NO	

[100%]

Electron	transfer

Methyl	hexanoate C7H14O2	+	NO+ → C6H11O
+	(m/z	99)	+	NO	

[70%]

Hydride abstrac-

tion

C7H14O2	+	NO+ + N2 → C7H14O2.NO+	(m/z	

160)	+	N2	[30%]

Association**

4-Decanolide C10H18O2	+	NO+ → C10H18O2	.NO+	(m/z	200)	+	

NO	+	N2	[100%]

Association**

* Mass-to-charge ratio of the product ion is shown in parenthesis; the percentage of product formed in a 
given reaction path is shown in square brackets.

** Nitrogen (or helium) carrier gas mediates formation of this product.  The ‘third body’ carries some 
excess kinetic energy away enabling binding of C6H8O3.NO+.

Sample	type/name Batch Abbreviation for figures Labelling	of	replicates	(5)	in	

class	projection	plots

Flavour	 

standard	1	(‘S1’)

Batch	A

Batch	B

Batch	C

S1a

S1b

S1c

S1a-1	to	S1a-5

S1b-1	to	S1b-5

S1c-1	to	S1c-5

Flavour	standard	

2	(‘S2’)

Batch	A

Batch	B

Batch	C

S2a

S2b

S2c

S2a-1	to	S2a-5

S2b-1	to	S2b-5

S2c-1	to	S2c-5

Unknown	1	(‘U1’) U1 U1-1	to	U1-5

Unknown	2	(‘U2’) U2 U2-1	to	U2-5

Unknown	3	(‘U3’) U3 U3-1	to	U3-5

Table 2. Strawberry flavour mix samples supplied for analysis, identification codes and abbreviations 
used in this article.
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utilised	was	Soft	Independent	Modelling	

by	Class	Analogy	(SIMCA),	which	was	

developed	by	Wold	in	the	1970s	[8].	SIMCA	

applies	principal	component	analysis	(PCA)	

to	the	whole	dataset	and	to	each	of	the	

classes	with	the	end	goal	of	creating	a	

model	that	discriminates	each	class	from	the	

others.	The	Infometrix®	Inc.	(Bothell,	WA)	

implementation	of	the	SIMCA	algorithm	

in	the	Pirouette	software	package	was	

employed	here.		

Prior	to	analysis	using	the	Pirouette	

software	package,	SIFT-MS	SCAN	data	

were	normalised	(giving	a	sum	of	unity	

for	all	masses	in	the	range),	had	the	blank	

subtracted,	and	had	masses	with	normalised	

signals	less	than	0.000005	removed.

Three	types	of	output	from	the	SIMCA	

analysis	are	presented	in	this	report:

1.	Class projections:	These	three-

dimensional	plots	show	how	each	sample	

falls	with	respect	to	the	three	most	important	

principal	components	derived	from	PCA	on	

the	entire	data	set.	Each	user-defined	class	

shows	the	sample	with	the	same	color	and	a	

‘cloud’	representing	the	calculated	space	in	

which	all	samples	of	the	class	are	expected	

to lie. Better class separations lead to more 

confident	assignment	of	unknown	samples	

to a predefined class, if a suitable one exists.

2.	Interclass distances:	These	are	a	measure	

of	the	separation	between	classes.	A	value	

of	three	(3)	is	usually	considered	acceptable	

for	class	separation	[9].		Sometimes	the	class	

separability	indicated	by	these	distances	is	

not	apparent	in	the	three-dimensional	class	

projection	plot.

3.	Discriminating power: This	parameter	

helps	variables	to	be	identified	that	provide	

the	most	discrimination	between	the	classes.	

A	variable	with	larger	discriminating	power	

has	greater	influence	on	separating	the	

classes	than	one	with	a	small	discriminating	

power.	There	does	not	appear	to	be	a	set	

threshold	value	above	which	a	discriminating	

power	is	considered	‘good’,	because	these	

values	vary	strongly	with	interclass	distance.

Results and Discussion
The	SIFT-MS	SCAN	data	(obtained	using	the	

NO+	reagent	ion)	for	the	strawberry	flavour	

mixes	are	shown	in	Figure	2.	The	data	in	

Figure	2	are	the	mean	of	the	five	replicate	

analyses,	whereas	the	individual	replicates	

are	utilised	for	the	subsequent	statistical	

analyses	in	which	these	scans	are	utilised	as	

‘flavour	fingerprints’.	

	1.	Evaluation	of	the	ability	to	discriminate	

different	batches	of	flavour	standards

SIFT-MS	scan	data	obtained	using	the	

NO+ reagent ion can be used to rapidly 

screen	different	flavour	mix	batches	for	

acceptability.	Figures	3	and	4	show	the	

results	obtained	for	flavour	standards	1	

(S1)	and	2	(S2),	respectively,	following	

multivariate	statistical	analysis	with	the	

SIMCA	algorithm.	The	analysis	reveals	that	

the	different	batches	of	S1	are	significantly	

less	consistent	than	those	of	S2,	both	visually	

in	the	class	projections	and	quantitatively	

from	the	interclass	distance	metric	(Figures	

3	and	4).

2.	Evaluation	of	the	ability	to	discriminate	

between standards

Figure	5	shows	an	evaluation	of	the	ability	

of	SIFT-MS	to	discriminate	between	the	

different	flavour	mixes.	For	this	statistical	

analysis,	the	three	batches	for	each	of	

flavour	standard	1	and	2	are	grouped	

together	into	their	parent	classes.	The	

separation obtained is very large, confirming 

the	visual	differences	observable	in	the	

scan	spectra	(Figure	2).	Chemically,	these	

differences arise from different compositions 

of	the	flavour	mixes	that	then	give	rise	

to	different	product	ion	profiles	in	the	

SIFT-MS	mass	spectra.		The	discriminating	

powers	indicate	the	product	ion	m/z	that	

discriminate	these	mixes	most	effectively.		

For	example,	it	appears	that	4-decanolide	

and	methyl	cinnamate	are	significant	in	this	

instance.

3.	Evaluation	of	ability	to	classify	unknowns

a)

b)

Figure 2. SIFT-MS scan data obtained with the NO+ reagent ion for the averaged replicates of each flavour 

mix batch: (a) low m/z region and (b) higher m/z region.

Figure 3. Evaluation of the variability of different batches (A, B, and C) of flavour standard 1 (‘S1’) using 
SIFT-MS in scan mode coupled with SIMCA multivariate statistical analysis.  Class projections, interclass 
distances, and the top 10 variables (m/z) for discrimination of the samples are shown.
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Three	unidentified	flavour	mixes	were	

supplied	for	evaluation	using	SIFT-MS.		

To	identify	the	mix	group	to	which	they	

belong	(if	any),	each	of	the	‘unknown’	

samples	(U1,	U2,	and	U3)	was	added	as	

a	new	class	in	the	SIMCA	analysis.	The	

results	obtained	are	summarised	in	Figure	

6.	Based	on	the	interclass	distances	

determined	(and	confirmed	visually	in	the	

class	projection	plot):

•	Unknown 1 (U1) is	another	batch	of	

flavour	standard	1	(S1).	The	interclass	

distance	between	U1	and	S1	is	greater	

than	3,	but	as	shown	in	Figure	3,	the	three	

batches	(identified	as	S1a,	S1b,	and	S1c)	

are all readily differentiable based on 

their	volatile	profiles.	That	is,	there	is	a	lot	

of	variability	in	the	batches	of	the	S1	mix.

•	Unknown 2 (U2)	is	identified	as	another	

batch	of	flavour	standard	2	(S2),	because	

the	interclass	distance	is	very	small.

•	Unknown 3 (U3) is extremely different 

from	all	other	flavour	mixes,	as	indicated	

by	large	interclass	distances	with	all	

other	samples.	It	represents	a	completely	

different	(i.e.	a	third)	flavour	mix.

Assignments	of	unknown	samples	U1	

and	U2	to	S1	and	S2,	respectively,	were	

confirmed	by	adding	them	to	the	S1	

and	S2	data	sets	and	reprocessing	

with	SIMCA.	Further	confirmation	of	

these	assignments	was	provided	by	

the	customer.	They	likewise	observed	

significant	variation	in	S1	batches	using	

gas	chromatographic	analysis	and	

attributed	it	to	degradation	of	the	flavour	

mixes.

Conclusions
This	study	demonstrates	that	

untargeted	SIFT-MS	analysis	coupled	

with	multivariate	statistical	analysis	can	

rapidly screen strawberry flavour mixes to 

ensure	that	they	fall	within	the	required	

specification	prior	to	their	use	in	foods,	

beverages, and nutritional formulations. 

Automated	static	headspace-SIFT-MS	

analyses	samples	in	less	than	one	minute	

using	a	fingerprinting	approach	(full	scan	

mode).

The	combined	instrumental	and	statistical	

approach	utilised	here	has	potential	

to	facilitate	enhanced	quality	control	

through	rapid,	economical	screening	of	

food ingredients.
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