
Introduction
Qualitative and quantitative analysis of 

environmental samples containing large 

numbers of analytes in single LC-MS/MS 

assays has become more widespread in 

recent years. This has been rapidly enabled 

by the development of fast scanning 

and trapping-type mass spectrometry 

instruments and most notably with high 

resolution accurate mass spectrometry 

(HRMS). Despite having accurate m/z 

measurements in both full-scan and 

tandem MS modes, isomers often exist 

that make identification challenging for 

some compounds, especially in complex 

matrices. Chromatographic retention time 

(tR) is usually used to further distinguish 

compounds, where standards are available. 

Unfortunately, this is not always the case. 

For pharmaceuticals and illicit drugs, for 

example, the presence of Phase I and 

II metabolites still pose a challenge for 

confirmation in silico as reference materials 

of high purity either are not available or are 

prohibitively expensive to procure. Also, 

retention on C18 media is limited for many 

such polar compounds. 

Where multiple unknowns exist in a sample, 

the prediction of tR may rapidly enable 

shortlisting of candidates. Retention 

prediction has been the focus of significant 

research and has been particularly successful 

in gas chromatography [1-4]. However, tR 

prediction in liquid chromatography (LC) 

has been more challenging. Mechanistic 

approaches, e.g., using linear solvation 

energy relationships, have been able to 

successfully predict retention of compounds 

using sets of measured tR or retention factor 

(k) data gathered under an array of different 

experimental conditions, such as mobile 

phase composition, pH, temperature, 

flow rate, etc. However, the number of 

experiments generally required to build 

such models is often high and application 

to large numbers of (unknown) compounds, 

especially under gradient conditions has, 

on the whole, been very limited. Among 

other computational approaches, machine 

learning has been used for many years for tR 

prediction of peptides [5]. Recently, machine 

learning has been used successfully for 
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Figure 1. Multiple reaction monitoring chromatograms of 652 pesticides on the 100 x 2.1 mm, 2.7 µm Raptor 
biphenyl column. Note: dimethirimol data removed for clarity (measured tR = 5.00 min; predicted tR = 4.88 min).
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small molecules including pharmaceuticals, 

metabolites, pesticides, herbicides and 

industrial chemicals [6-9]. This technique 

involves the use of computer algorithms 

that can learn to predict tR by finding trends 

in compound structures, properties and 

functions. Recently, we published work 

using artificial neural networks to predict 
retention of 1,117 chemically diverse 
compounds across ten reversed-phase 
chromatography (RPLC) methods for a range 
of different applications and sample types 
[10].  Predictions were generally very good 
and with an average inaccuracy of 1.02 ±0.54 
min across all methods. Longer runtimes 
generally yielded more inaccuracy, but it was 
found that inaccuracy was relative and within 
~3-5 % of the retention ranges of all analytes 
measured. Therefore, faster separations in 
general enabled better accuracy. However, 
all of these methods involved separations 
performed on either C18 or C8 media. Other 
RPLC phases exist, such as aromatic, polar 
embedded and hybrid phases, which can 
offer alternative selectivity to C18, especially 
for isomers and more polar compounds. To 
our knowledge, no machine learning-based 
prediction models have yet been developed 
for other RPLC media. 

Fast, selective and highly sensitive methods 
for an array of different compounds have 
recently been developed using biphenyl 
columns and have gained in popularity as 
an alternative to C18. Shimadzu Corporation 
recently published a method for 646 
pesticides using this phase [11]. The aim 
of this work was to train and evaluate a 
machine learning model to predict tR for 
application to these compound types given 
the size of the dataset available for training 

models in this method. Particularly relevant 
to pesticides, the aromatic character in the 
stationary phase can improve separation of 
these compounds and offers an excellent 
alternative to C18. Predictions of tR on several 
different RPLC media in this way offers the 
possibility for rapid shortlisting of candidates 
when performing suspect screening on 
environmental samples.

2. Experimental

2.1 Retention time datasets

Retention data for 653 compounds were 

generated using a biphenyl column (Restek 

Raptor 100 x 2.1 mm, 2.7 µm) configured to a 

Shimadzu LCMS-8060 LC-MS/MS instrument 

in polarity switching mode and with 

MRM data for up to three transitions per 

compound. Multistep gradient elution was 

using mobile phase reservoirs containing 

water (mobile phase A) and methanol 

(mobile phase B) with both containing a 

buffer of 2 mM ammonium formate and 

0.002% formic acid in each. A 0.002% formic 

acid concentration resulted in a higher 

signal intensity in MS/MS, particularly for 

negative ion mode, and this ion signal 

response was consistent within and between 

batch analyses. This approach has been 

reproduced within food safety applications 

but also within drugs of abuse testing [12]. 

The % relative standard deviation (%RSD) of 

n=100 replicate injections of a spiked apple 

matrix at 50 µg/L was previously measured at 

an average of 0.12 %.  

The gradient was as follows: 3-10% B over 

1 min; 10-55% B for 2 min; 55-100% B over 

7.5 min; held at 100% B for 1.5 min followed 

by re-equilibration to 3 % B for 3 min. The 

column temperature was 35ºC, the injection 

volume was 2 µL and the flow rate was 0.4 

mL/min. 

2.2 Descriptor generation,  
feature selection and retention 
time prediction 

For all compounds, canonical simplified 

molecular input line entry system (SMILES) 

strings were generated using Chemspider 

freeware (Royal Society of Chemistry, UK). 

Molecular descriptors were generated 

using two licenced software packages ACD 

Labs Percepta for logD only (Advanced 

Chemistry Development Laboratories, ON, 

Canada) and Dragon version 7 for all other 

descriptors (Kode Chemoinformatics s.r.l., 

Pisa, Italy). For prediction of pesticide tR, 

n=16 molecular descriptors were based on 

our previous work [10] including unsaturation 

index (Ui), hydrophilic factor (Hy), Ghose–

Crippen logP (AlogP), Moriguchi logP 

(MlogP), number of benzene-like rings 

(nBnz), number of double and triple bonds 

(nDB/nTB), number of 4–9 membered 

rings (nR04-nR09), number of carbons 

(nC), number of oxygens (nO) and logD 

(calculated at pH 5.4). These descriptors 

were sub-selected from a larger set of >200 

user-curated constitutional, topological 

and physicochemical descriptors deemed 

relevant to reversed-phase LC mechanisms 

in the Network Designer Tool in the neural 

network simulator package, Trajan v6.0. 

2.3 Machine learning,  
optimisation and procedures

All artificial neural network modelling 

was performed using Trajan v6.0 software 

(Trajan Software Ltd, Lincolnshire, UK). 

The intelligent problem solver tool was 

used to optimise a suitable neural network 

and architecture in several steps, each 

comprising 15 min intervals for training. 

Briefly, the network type was first selected 

from a range of different types, including 

probabilistic neural networks (PNNs), 

generalised regression neural networks 

(GRNNs), radial basis function (RBFs), as 

well as three- and four-layer multilayer 

perceptrons (MLPs). Here, the MLPs were 

the best choice for tR prediction, and 

are a type of feed-forward, non-linear 

model that comprises of: (a) an input 

layer (i.e., molecular descriptors); (b) one 

or two hidden layers which each contain 

an optimised number nodes which are 

Figure 2. (a) Range of data for each descriptor used in the optimised tR prediction model and (b) the 
coverage of measured tR of all 653 compounds across the 12 min gradient runtime. For molecular descriptor 
abbreviations, see section 2.2.



interconnected and weighted; and (c) the 

output layer which collates the information 

from the hidden layer(s) and generates tR via 

an activation function. The proportioning 

of all datasets was set at 70:15:15 across 

training, verification and blind test cases 

(optimised). Cases were randomly re-

assigned for every neural network type 

investigated. The best model type was 

retained based on the lowest predicted 

errors obtained and with consistency across 

the three datasets. The best model overall 

was then replicated exactly via the custom 

network designer (n=6) and evaluated for 

correlation coefficient (R2), slope, intercept, 

residual error, as well as overall accuracy, 

precision and sensitivity to molecular 

descriptor data.

3. Results and Discussion

3.1 Compound selection  
and retention behaviour on 
biphenyl media

The biphenyl column used here 

offers complimentary selectivity to 

C18 especially for aromatics and polar 

compounds and especially when used 

with methanolic mobile phases. According 

to the manufacturer, it is suitable for fast 

separations and increases the retention 

of early eluting species to minimise 

matrix suppression when used with mass 

spectrometry. The column is packed with 

superficially porous particles with a surface 

area of 130 m2/g which offered high 

efficiency in this case.

Retention data for all 653 compounds 

covered most of the gradient separation 

space (Figure 1 and Figure 2(b)), which 

was considered desirable to allow models 

to learn more fully from quantitative 

structure-activity relationship (QSAR) data 

at each timepoint. Higher retention of 

polar compounds was observed meaning 

that model predictive accuracy for any 

new compounds eluting early could be 

less reliable. For example, and following 

elution of the first compound, aminopyralid 

at 0.806 min, the next compound to elute 

was methamidophos at 1.758 min. Only 9 

compounds in total eluted within the first 3 

min, after which the remaining compounds 

eluted in more rapid succession up to 

etofenprox at 10.367 min (Figure 2). Biphenyl 

media contain large electron clouds which 

promote enhanced π-π and dipole-induced 

dipole interactions in addition to van der 

Waals interactions. These early eluting 

compounds contained no phenyl rings, but 

all contained at least one double bond or 

displayed some level of aromaticity, and 

enough to result in significant retention 

from the void. The full selection of 653 

compounds covered a wide range of 

polarities (e.g., -1.63≤AlogP≤7.88). A total 

of n=460 compounds had between one 

and four benzene-like rings and n=565 had 

between one and seven double bonds. 

However, correlation of AlogP with tR was 

lower than expected at R2=0.5496. Many 

compounds were partly or fully ionised 

under these slightly acidic mobile phase 

conditions (pH=5.4), with logD for all 

compounds between -2.75 (diuron) and 7.99 

(acequinocyl). This descriptor was correlated 

to a larger extent with tR (R
2 = 0.6279) than 

AlogP and better took into account the 

ionised portion of all compounds under 

mobile phase pH conditions. However, 

it alone could not be used to predict tR 

reliably. In the main, nC was high across 

the board in comparison to nO, potentially 

resulting in preferential retention via van der 

Waals forces over dipole-induced dipole 

interactions. In previous works involving 

tR prediction on C18 media, a prioritised 

list of 16 molecular descriptors enabled 

reliable models to be built for >1,117 

drugs, pesticides and industrial chemicals. 

However, here some of these descriptors 

yielded no data in the main. These were 

nTB, nR04-05 and nR07-09. Nonetheless, 

these were retained in the model as a small 

number of compounds did possess some of 

these features and it was decided to test the 

generalisability of the C18 model to another 

reversed-phase medium as is.

3.2 Performance of  
the optimised model

During optimisation, it was quickly apparent 

that MLPs performed best. This was in line 

with previous models for C8 or C18 media 

[7, 10]. The best neural network-type model 

had a 16-5-1 MLP architecture (Figure 3(a)). 

Fewer layers and nodes was desirable 

so that the model could be more easily 

interpreted and to enhance its stability for 

generalised application. An R2 >0.85 was 

achieved for all three datasets, including 

the blind test data. Overall, excellent 

consistency was also observed between 

the training, verification and blind tests 

datasets showing that the model was not 

over-trained. All three yielded a mean 

Figure 3. (a) Predicted versus measured tR using a single 16-5-1 MLP model and its associated residual errors 
(b), (c) predicted versus measured tR using an ensemble of four MLPs and its associated residual errors (d). 
Data split into training data (n=457); verification and blind test data (n=98 each).

20
August / September 2019



error of 31 s from the measured tR value 

which represented 4.3% of the analyte 

retention range, and again similar to 

previous performance on C18. Over 86% of 

all compounds were predicted to within 60 s 

of the measured value (n=567) and the 75th 

percentile of all errors was 43 s, which was 

set as the threshold for matching. The worst 

performance was for triazoxide, mesotrione 

and cyclosulfamuron with errors of -3.91 

min, 2.97 min and -2.5 min, respectively. 

Each of these have high sulphur or nitrogen 

content, which is not covered explicitly in 

the descriptor dataset. All three of these 

compounds were present in the training set. 

The worst predictions in the verification and 

blind test sets were for acibenzolar-S-methyl 

and allidochlor, respectively and errors for 

both were within 2 min. However, on the 

whole, this model generalised very well to 

this new stationary phase type. 

Across all three datasets, there was a small 

negative bias to the prediction overall (-1.2 

s). Closer inspection of Figure 3(b), however, 

revealed an underlying trend to the errors 

obtained. Early eluting compounds were 

very slightly over-predicted in comparison 

to later eluting compound (average 

error of the first and second half of all 

eluting compounds was +17.1 and -17.8 s 

respectively). The stability of artificial neural 

networks can be improved by ‘ensembling’ 

models. Four replicate MLPs were retrained 

and combined. Overall, the bias of the 

ensemble model reduced significantly to 

0.22 s. The trend in bias reduced marginally 

to 15.2 and 13.3 s for the first and second 

half of eluting species, respectively, but 
was still evident. This ensemble model 
marginally reduced the average errors in 
comparison to the single model alone and 
the correlations improved generally (Figure 
3(c) and (d)). Errors were 28 ±27 s, 28 ±23 
s and 29 ±25 s for the training, verification 
and blind test sets respectively. Performance 
remained poorest for triaxoxide as before 
(error = -4.02 min), but slightly improved for 
both mesotrione (2.05 min) and cyclosulfuron 
(-2.234 min). Overall, there were fewer 
outliers than with a single MLP model. 
Therefore, it was decided to proceed with 
the ensemble as the preferred approach. 
The 75th percentile of all absolute errors was 
39 s and this was set as the match threshold. 
In the blind test set for the ensemble 
model, a few compounds with structural 
commonality lay outside of this range that 
are worth noting. Specifically, these included 
several substituted nitroaniline species, 
such as butralin, isopropalin, pendimethalin 
and nitralin. Closer examination of these 
structures highlighted that no descriptor 
was included to represent nitro groups 
specifically, although it was hoped this 
would have been reflected in logD/logP 
data indirectly. This could also be partially 
explained by the existence of only two 
similar compounds (i.e., oryzalin and 
flumetralin) in the training set. However, 
overall, the performance of the ensemble 
model was considered excellent and 
represents the first successful prediction 
of gradient retention times of such a large 
number of compounds on a biphenyl 

stationary phase and to this accuracy level. 

3.3 Collinearity, sensitivity  
analysis and applicability domain

Very low single descriptor correlations with tR 

were observed and this further strengthened 

the need for the multi-input model approach 

(Figure 5). Indeed, initial investigations of 

simpler, multiple linear regression (MLR) 

models showed that, although a correlation 

existed between measured and predicted 

tR (R
2=0.7896), it yielded inferior results 

to neural networks in general with mean 

tR inaccuracy for all compounds of 2.35 

±0.83 min. The non-linear neural network 

approach was far superior, as shown above. 

Unlike in MLR, where coefficients can be 

interpreted to help understand contributions 

of each input to the output, interrogation 

of input dependency for neural networks is 

more complex. The dependency of both the 

best single model and ensemble on each 

molecular descriptor was then evaluated 

where each molecular descriptor was 

systematically removed and the change in 

performance from the complete dataset 

calculated to produce an error ratio. Values 

less than 1.0 indicated that the model was 

sub-optimal and that descriptor data was 

worsening predictions. As can be observed 

in Figure 4, by far the largest contribution 

to the prediction for both models was 

logD and in line with similar models on 

C18 media. The next most important 

descriptors were slightly different between 

the single and ensemble models and also to 

previous models on C18. In particular, some 

descriptors were likely prioritised given the 

aromatic character on the stationary phase 

(e.g., nR06, Hy, nBnz). The high contribution 

of Hy in particular is likely to also reflect 

the observed effect of increased retention 

of polar, early eluting compounds as it is 

related to hydrophilicity [13].This molecular 

descriptor includes variables such as the 

number of hydrophilic groups (-OH, -SH, 

-NH), nC and nSK the number of atoms 

excluding hydrogen and was the second 

highest contributor to predictions using 

the ensemble model. As can also be seen, 

descriptors that were retained in the model 

design stage, but which had near zero values 

were deprioritised in both models (i.e., nTB, 

nR04, nR07-09). For the single model, error 

ratio values for nTB was <1.0 meaning there 

was a slight improvement in the model 

when it was removed. With the ensemble 

model however, and even though very few 

compounds possessed triple bonds, it still 

did contribute overall to the prediction. 

This is likely where stability of the ensemble 

approach was observed, leading to better 

generalisability.

Figure 4. Sensitivity analysis of the single MLP model (blue) and ensemble model (orange).  
Error ratios >1 represent high model dependency on that descriptor.
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The descriptors used here were chosen 

from a larger list of >200 compound 

properties that were initially user-curated 

based on having known relevance to RPLC 

[7]. Following this, neural network-based 

descriptor selection was used to narrow 

the list down to a set of 16 molecular 

descriptors that yielded the best accuracy 

overall. An alternative approach to feature 

selection is to generate thousands of 

molecular descriptors at random and 

perform statistical feature selection using 

statistical algorithms [14, 15]. This may yield 

alternative descriptors giving similar (or 

better) performance to the user-curated 

approach, but may not necessarily have any 

relationship to mechanisms in RPLC. Both 

methods were performed here, and both 

gave similar results in initial experiments. 

Indeed, pursuit of alternative descriptors 

to generate a second parallel model 

may boost confidence in predictions on 

biphenyl phases, and similar to previous 

work in our laboratory on prediction of 

passive sampler uptake rates where both 

approaches were used. However, this 

was beyond the scope of this work as 

the generalisability of the previous C18 

optimised model was considered a priority 

to enable simultaneous predictions across 

multiple types of RPLC methods using 

the same descriptor set. The limitation of 

a user-curated approach was that some 

moderate collinearity existed between some 

variables (Figure 5). Collinearity can add 

some unnecessary imprecision or inaccuracy 

to models if left undetected and can lead 

to overfitting (which was not observed 

here, due to good consistency between 

the training, verification and blind test set 

data). Particularly, collinearity can affect 

mechanistic interpretation of the model. 

The highest positive Pearson correlations 

of >0.8 were observed, unsurprisingly, for 

MlogP and AlogP and between AlogP and 

logD. Therefore, mechanistic interpretations 

between these specific descriptors in terms 

of relative weighting should be taken 

with caution. Both were among the most 

positively correlated descriptors with tR 

along with logD and nC over all others. 

However, Pearson correlations for all 

descriptors with tR was <0.8, showing that 

no one descriptor was likely useful to model 

retention accurately. As above, removal 

of the collinear descriptors worsened the 

predictions (likely as a result of learning 

from slight differences in calculation of 

logP, for example), so these were retained 

despite being collinear. All other correlations 

were below a threshold of 0.8 and were 

considered acceptable for use here. No 

excessive negative correlation was observed 

between any of the other descriptors, which 

might be expected from a user-curated 

approach. Principal component analysis 

of the shortlisted descriptor data for all 

compounds in Figure 6(a) revealed clear 

clustering for most molecules to define an 

applicability domain generally. A few outliers 

existed in principal component 2, which 

may highlight poor molecular description 

and a limited applicability domain for these 

molecules in particular. A closer examination 

revealed that most of these were 

macromolecules such as gibberellic acid, 

avermectins, doramectin, azadirachtin and 

spinosad which contained larger numbers 

of rings than the rest of the compounds 

(Figure 6(b)). However, the predicted 

tR for these compounds were mostly 

within the 39 s threshold except for three 

compounds isonoruron (tR absolute error 

=59 s), sulfosulfuron (43 s) and spinetoram 

(48 s). Therefore, the selected descriptors 

for these types of molecules were likely 

insufficient for accurate predictions, but this 

was considered a very minor limitation given 

that this represented <1% of the number of 

compounds in the dataset. Examination of 

the PCA data, however, was able to identify 

this to give added assurance to the user if 

needed. 

Conclusion
Prediction of tR for 653 pesticides on a 

biphenyl reversed-phase stationary phase 

under gradient elution conditions was 

possible using machine learning for the first 

time. In particular, an ensemble of four two-

layer MLPs achieved the best results within 

an acceptance threshold set at ±39 s of the 

true value. Although the data was curated 

on an LC-MS/MS system in targeted mode, 

prediction of tR becomes especially useful 

for unknown identification workflows using 

full-scan high resolution mass spectrometry. 

This approach represents an efficient way to 

rapidly shortlist suspect compounds before 

investing in expensive reference materials or 

synthesis. 
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